Type Encoding of Logix Structures

in CIP Data Table R/W

(3-Nov-06, Rev. 1.2)

RA Technologies Copyright ©2006 Rockwell Automation plof 11

Type Encoding of Logix Structures in CIP Data Table R/W

Type Encoding of Logix Structures in CIP Data Table R/W

Logix products support the following communication services to access named data (Tags): CIP
Data Table Read and CIP Data Table Write (CIP DT R/W). These services contain an
abbreviated type code as part of the service data. This document is an aid to users who need to
compute the abbreviated type code of a Logix data structure for these services.

“CIP” refers to the application-level “Common Industrial Protocol” shared between
ControlNet, DeviceNet, EtherNet/IP, and Componet. The CIP Standard is available from ODVA,
the Open Device Vendor Association (www.odva.org). The calculation of the structure
abbreviated type code for the vendor-specific CIP DT R/W services uses the standard CRC
algorithm (CRC-16 polynomial) described in the “CIP Common” specification (Appendix C:
Data Management, section C-7), but the calculation is performed on a vendor-specific “Type
Encoding String” rather than a CIP standard type encoding string.

This abbreviated type code can also be obtained without calculation from:
1. the reply packet of a CIP Data Table Read of a structure Tag, or
2. the Logix structure template (refer to “LDA manual” below).

Note: This document was originally intended as an appendix to the “Logix Data Access
Reference Manual”, publication 1756-RM0O05A-EN-E. Please refer to that document for further
information on the CIP services and data types supported by the Rockwell Automation Logix
family of products. This “LDA manual” is available for download from the www.ab.com website.

As shown in the “CIP Commands” section of the “LDA manual”, the CIP DT R/W service data
includes the named data (Tag) along with the Abbreviated Data Type. Abbreviated Data Types
are described in the “Data Type Reporting” section of the LDA manual. This type code is used to
check that the data type of the Tag matches at the client and server. Note that the structure type
code, as a CRC, is not totally unique to that structure. The type code would likely change if the
structure data type is modified, allowing the client or server to detect a mismatch, however, the
type code does not completely guarantee unigueness.

Logix data structures are mixed collections of
o atomic types; e.g. SINT, INT, DINT, REAL, etc.
e arrays of any type, atomic or structure.
e other structures

Logix data structures are categorized as:
o Predefined Data Types (PDT); e.g. Counter, Timer, PID, etc. (including String).
e Module-Defined Data Types (MDT); created by the module’s configuration profile.
o User-Defined Data Types (UDT); a data structure created by the user.

*kx NOTE * k%
This document only applies to UDT structures, and only those UDTs without hidden
members (except for BOOL — see below) and without nested PDTs or MDTSs.
PDT and MDT structures can contain hidden members, and can change over time, and are
therefore not addressed by this document. It’s also possible for a user to insert a hidden member

RA Technologies Copyright ©2006 Rockwell Automation p2 of 11

http://www.odva.org/
http://www.ab.com/

Type Encoding of Logix Structures in CIP Data Table R/W

into a UDT by importing a modified L5K export file, but this document does not address UDTs
that have been modified in that manner. BOOL are implemented either as a hidden SINT or a
hidden 64-bit array. This is further explained in the examples to follow.

Logix structure data types are shown below as seen in the organizer view of a RSLogix5000
project. This example is from a project where the user has created a UDT (STRUCT_A), and a
1756-OF8 module has been added to the system, automatically creating the OF8 Input, Output,
and Config MDTs. The PDT (Predefined) list is not expanded below, but includes over 80
structures. A STRING is a form of UDT.

—-£5] Data Types

8] User-Defined
STRUCT A

= 'ﬁ, Skrings
STRING

+- L predefined

-8 Module-Defined
AB:1756_NIO_Skruck:C:0
AE:1756_(OFS_Float:C:0
AE: 1756 (OFS_Flaat:1:0
AE:1756_0OFS_Flaak:ond

In Logix, the structure data type is described in an ASCII Type Encoding String containing:
e Name of structure
e Name of member structures
o Name of member data types (e.g. SINT, DINT, TIMER, etc)
o Comma delimiters between each element of the string

The order of the elements in the Type Encoding String is based on the order of the data in the
structure template, which is also the order of data in Logix memory and in the CIP DT R/W
packet. Typically, for UDTs, this is the same as the order of the structure members as they
appear in the RSLogix5000 Data Monitor view, but that may not always be the case. The order
of data can be confirmed by reading the structure template (see LDA manual), or viewing the
L5K export file, and checked whenever needed. A change in order of members may not always
result in a different abbreviated type code.

Data is located in Logix memory according to certain alignment rules:
= Structures, Arrays, DINT, and REAL begin and end on 32-bit word boundaries
= INTSs are on 16-bit word boundaries.
= SINTSs are on 8 bit word boundaries
= BOOLs of 8 or less are packed into a SINT.
= BOOLs of more than 8 are packed into a 64-bit array, BOOL[64], with 32 bit alignment.

The data in the CIP DT R/W packet is the same as in Logix memory, including pad bytes
between data members which result from this alignment.

RA Technologies Copyright ©2006 Rockwell Automation p3 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

The structure Type Encoding String is constructed as follows

1. The ASCII string starts with the name of the structure.

2. Concatenate the names of the data types of the members of the structure in their order
in the structure, each separated by a comma.

3. BOOL are mapped to a hidden SINT or 64-bit array. Adjacent BOOL of 8 or less are
replaced with “SINT” type in the string. Adjacent BOOL of more than 8 are replaced
with a 64-bit array and “BOOL[64]” is included in the string.

4. Each nested structure is indicated by the structure name followed by the names of the
data type of its members.

5. Each nested array is indicated by the name of the data types of its members, followed
by the array size in brackets. Only single dimension arrays can be nested in Logix
structures. For arrays of structures, the structure members are inserted between the
structure name and the bracket, without a comma ahead of the bracket.

Note: Because the name of the structure data type and its nested structures are included in

the Type Encoding String, these names have to be known in the both client and server.

The “abbreviated type code” is the CRC calculated over the Type Encoding String (including
comma delimeters, but not including quotes).

Example Type Encoding Strings

Type Encoding Strings can get complicated, especially with nested UDTs and Arrays. Below is
an example to illustrate the construction of the String for a UDT with nested UDTSs.

Three UDT’s are created in an RSLogix5000 project, as defined below. UDT2 includes UDT3
as a member, and UDT1 includes both UDT2 and UDT3 as members.

EI'EJ Data Types
Elﬁ User-Defined
P UDT1

..... unTz

L DTS
Eﬁ, Strings
Eﬁ, Predefined

UDT1 contains a UDT2 and an array of UDT3

M anie Data Tupe Style D'escription
114 SINT Decimal
e SINTIZ2] Decimal
nc otz
o DT3[
*

RA Technologies Copyright ©2006 Rockwell Automation p4 of 11

UDT2 contains UDT3 and an array of UDT3

Type Encoding of Logix Structures in CIP Data Table R/W

I arne Data Tupe Style D'ezcription
1124, DIMNT Decimal
2B SINT[3] Decimal
2C UDT3
el LDT3[2]
*
UDT3 does not contain any other UDTs
I arne Data Type Style Dezcrption
134, SINT Cecimal
el SINT[4] Cecimal
*

This is a screenshot view of UDT1 data type in RSLogix5000 Data Monitor, expanded to show
the members and sub-members

kembers: Data Tope Size: 72 byte(z]
M ame Data Tupe Style Dezcriptian
1A SINT Decimal
e SINTI[Z] Decimal
= uic otz
— 24 DIMT Decimal
—LzB SIMNT[3] Decimal
[=H U2C oT3
— 134 SINT Decimal
— 3B SIMNT[4] Decimal
[=H W20 DT3[
— 134 SINT Decimal
— 3B SIMNT[4] Decimal
= uiD OT3[4]
— 3 SINT Decimal
— 3B SIMNT[4] Decimal
#*:

When the project is saved as an L5K file, these data types are described as follows:
DATATYPE UDT1 (FamilyType := NoFamily)
SINT U1A;
SINT U1B[2];
UDT2 UlC (Radix := Decimal);
UDT3 UlD[4] (Radix := Decimal);
END_DATATYPE

RA Technologies Copyright ©2006 Rockwell Automation

p5 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

DATATYPE UDT2 (FamilyType := NoFamily)
DINT U2A;
SINT U2B[3];
UDT3 U2C (Radix := Decimal);
UDT3 U2D[2] (Radix := Decimal);
END_DATATYPE

DATATYPE UDT3 (FamilyType := NoFamily)
SINT U3A;
SINT U3B[4];

END_DATATYPE

The UDT3 data type does not contain any other UDTs, so its Type Encoding String is created
from the above data types just by concatenating the UDT name with the data types of the
individual members:

“UDT3,SINT,SINT[4]”

The UDT2 data type contains UDT3. Its Type Encoding String is created in a similar manner,
concatenating the member types, but where UDT3 appears, the whole String for UDT3 is inserted.
For the array of UDT2, the array subscript is appended to the UDT3 String without a comma
separator.

“UDT2,DINT,SINT[3],UDT3,SINT,SINT[4],UDT3,SINT,SINT[4][2]”

The UDT1 data type contains both UDT2 and UDT3 as members. Its String is composed in the
same manner, inserting the whole UDT2 String above where it UDT2 appears.

“UDT1,SINT,SINT[2],UDT2,DINT,SINT[3],UDT3,SINT,SINT[4],UDT3,SINT,
SINT[4]1[2].UDT3,SINT,SINT[4]1[4]”

Note: If a Tag is created which is an array of UDTL, its data type is still the same as UDT1, and
the Type Encoding String is the same as UDT1.

If a new data type, UDTO, is created which is an array of 10 UDT1, its Type Encoding String
would differ from UDT1, as follows:

“UDTO,UDT1,SINT,SINT[2],UDT2,DINT,SINT[3],UDT3,SINT,SINT[4],UDT3,
SINT,SINT[4][2],UDT3,SINT,SINT[4][4][10]”

Note again how the array subscript is appended to the end, without a comma separator.

RA Technologies Copyright ©2006 Rockwell Automation p6 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

In this example, the byte order is shown below in the expanded column, with “PAD” bytes
inserted since DINT must be aligned on a 32-bit word boundary, and the packet must contain
multiples of 32-bit words.

Data Monitor | Byte order (without pad bytes) Padding of bytes in packet
(low byte first — little endian) (low byte left — high byte right)

SINT SINT, 00 00 00 00

SINT[2] SINT,SINT, 11 22 00 00

ubDT2

DINT DINT, 44 33 00 00

SINT[3] SINT,SINT,SINT, 55 66 77 00

ubDT3

SINT SINT, 88 00 00 00

SINT[4] SINT,SINT,SINT,SINT, 99 aa bb cc

UDT3[2]

SINT SINT, dd 00 00 00

SINT[4] SINT,SINT,SINT,SINT, ee ff 10 11
SINT, 12 00 00 00
SINT,SINT,SINT,SINT, 13 14 15 16

UDT3[4]

SINT SINT, 17 00 00 00

SINT[4] SINT,SINT,SINT,SINT, 18 19 1a 1b
SINT, 1c 00 00 00
SINT,SINT,SINT,SINT, 1d 1e 1f 20
SINT, 21 00 00 00
SINT,SINT,SINT,SINT, 22 23 24 25
SINT, 26 00 00 00
SINT,SINT,SINT,SINT 27 28 29 2a

The CRC calculation over the UDT1 Type Encoding String above produces the “abbreviated data
type” value of 0x5f58 which is highlighted in the packet trace below (along with pad bytes) of the
response packet to the CIP Read of UDT1 over EtherNet/IP.

0000 00 00 bc 05 1d c4 00 00 bc 05 1d c7 08 00 45 00
0010 00 a6 6e 97 00 00 40 06 fb 4a 82 97 85 al 82 97
0020 85 a0 af 12 04 04 cO b7 04 ae cO 52 71 be 50 18
0030 10 00 16 c5 00 00 70 OO 66 00 OO0 06 02 OF 00 0O
0040 00 00 OO0 OO 00 OO0 OO OO OO OO OO OO0 OO OO 00O 0O
0050 00 00 00 00 02 00 al OO0 04 00 01 11 9e 00 bl 0O
0060 52 00 53 82 cc 00 00 00 a0 02 58 5f 00 00 00 00
0070 11 22 00 00 44 33 00 00 55 66 77 00 88 00 00 00
0080 99 aa bb cc dd 00 00 00 ee ff 10 11 12 00 00 0O
0090 13 14 15 16 17 00 00 00 18 19 1a 1b 1c 00 00 0O
00a0 1d 1e 1f 20 21 00 00 00 22 23 24 25 26 00 00 0O
00b0 27 28 29 2a

RA Technologies Copyright ©2006 Rockwell Automation p7 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

The following screen shot is the RSLogix5000 Data Monitor view of a structure Tag named

It shows the hierarchy of
data in the structure and the corresponding order of bytes in the packet. Note the low-byte first
(little endian) order of the bytes as shown by the DINT member.

“complex” of type “UDT1” with the data values in the packet above.

Tag Hame & Walue € | Force Maz® | Style Type
[—|-comples R fendl DT
[+]-comples. 14 1a#00 Hex SIMT
[=]-complex. 1B f...1 f...1 Hex SIMT[Z]
[H-comples. TE[O] 16#1l Hex SIMT
[H-complex. TB[1] 1a#22 Hex SIMT
[=]-complex.U1C f...1 . DT2
[H-comples. LT C. 24, lago0oo_3344 Hex DIMT
[=|-complex. UT1C.LIZE f...1 f...) Hex SIMT[3]
[+-comples. LN C.UZE[O] 1a#55 Hex SIMT
[+H-complex. LN C.UZE[1] lagaa Hex SIMT
[+]-complex. T C.U2E[2] lagT7 Hex SIMT
[—-zomplex. LN C.U2C A fo..1 UOT3
[+H-comples. LN CU2C LI3A la#ag Hew SIMT
[=]-complex. T C.L2C LI3E f...1 f...1 Hex SIMT[4]
[+]-complex. 1C.U2C L3B[0] lag9a Hex SIMT
[+H-complex 1C.U2C L3B[T] la#aa Hex SIMT
[+]-complex. U1 C.LU2C U3E[E] la#bb Hex SIMT
[+]-complex. 1C.U2C L3B[3] la#co Hex SIMT
[=|-complex. UTC.UZD f...1 R DT 3]
EI-::DmpIEH.U1E.U2D[D] R fendl UDT3
[+H-comples. JTC. L2D[0]. L5, lagdd Hex SIMT
[=l-complex. LTC. L20[0] 1138 foaad f...1|Hex SIMT[4]
[H-complex. LN C.UZ2D[0LL... la#ee Hex SIMT
[+H-complex. LN C.UZD[0LL.. lagff Hew SIMT
[F-complex. U1 C.L20[0).L... la#lo Hex SIMT
[+H-complex. LN C.UZD[0LL... lagon Hex SIMT
2 [F-camplex ITC.UZ0[1] fo.at fo..} uoTa3

RA Technologies

[l maramlae THAT

Copyright ©2006 Rockwell Automation

LIMT2Ar41

p8 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

Example Type Encoding Strings of the Addressing Examples in Chapter 2 of LDA Manual

Below are the view in the RSLogix5000 controller organizer, the view of each structure in
RSLogix5000 Data Monitor, the data type in the L5K export file, and the corresponding Type
Encoding String.

=151 Data Types

Eﬁ User-Defined

STRUCT _A

STRUCT_B

[STRUCT_C

- STRUCT_D

Eﬂ--l:ﬁ atrings

Eﬂ--l:ﬁ Predefined

- Module-Defined

=143 [} Configuration

----- ﬂ [1] 1756-EMBT & ENBT_Slotl
----- 8 [2] 1756-ENET/& ENETA_Slat2

STRUCT_A
Members: Data Type Size: 16 byte|z]
I arne Data Type Style Dezcrption
lirnitd BOOL Decimal
lirnit¥ BOOL Decimal
travel DIMT Decimal
2o DIMT Decimal
wear REAL Float
*

DATATYPE STRUCT_A (FamilyType := NoFamily)

SINT 22z227272727ZZSTRUCT_AOQ (Hidden :=1);
BIT limit4 Z22Zz2727ZZSTRUCT_AO0: 0;

BIT limit7 ZZ22Z27222ZZZSTRUCT_AO0: 1;
DINT travel;

DINT errors;

REAL wear;

END_DATATYPE

STRUCT_A Type Encoding String:
"STRUCT_A,SINT,DINT,DINT,REAL"

In this structure the BOOL are mapped to the hidden SINT and it is the SINT which is
included in the Type Encoding String.

RA Technologies Copyright ©2006 Rockwell Automation p9 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

STRUCT B
kembers: Data Tupe Size: 32 byte(z]
M ame Data Tope Style Description

pilot_on BOOL Decimal
hourlyCount INT[12] Decimal
rate REAL Float

#*:

DATATYPE STRUCT_B (FamilyType := NoFamily)
SINT Z22Z227z272ZZZSTRUCT_BO (Hidden :=1);
BIT pilot_on 2Z2z27727777ZZSTRUCT_BO : 0;
INT hourlyCount[12];
REAL rate;

END_DATATYPE

STRUCT _B Type Encoding String:
"STRUCT _B,SINT,INT[12],REAL"

As with STRUCT_A, the BOOL is mapped to the hidden SINT and the SINT is included
in the Type Encoding String. The array of INT is included with the dimension of the

array in brackets.

STRUCT_C

tembers: D ata Type Size: B0 byte(z]
Mame Data Type Style D eszcription

hourz_full BOOL Decimal
today STRUCT_B
zampleTime TIMER
shipped COUNTER
*

DATATYPE STRUCT_C (FamilyType := NoFamily)
SINT 2z2z7z77777Z7ZSTRUCT_CO (Hidden :=1);
BIT hours_full zzzz7z777ZSTRUCT_CO : 0;
STRUCT_B today (Radix := Decimal);
TIMER sampleTime (Radix := Decimal);
COUNTER shipped (Radix := Decimal);
END_DATATYPE

STRUCT _C Type Encoding String:
*** NOT ADDRESSED BY THIS DOCUMENT SINCE IT CONTAINS A TIMER

AND A COUNTER, BOTH OF WHICH ARE PREDEFINED (PDT)
STRUCTURES ***,

RA Technologies Copyright ©2006 Rockwell Automation p10 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

STRUCT D
tembers: D ata Type Size: 572

Mame Data Tupe Style Dezcription
ryink IMT Decimal
rmyfloat REAL Float

myarnray STRUCT_C[3]

mypid FID

*

DATATYPE STRUCT_D (FamilyType := NoFamily)
INT myint;
REAL myfloat;
STRUCT _C myarray[8] (Radix := Float);
PID mypid (Radix := Float);
END_DATATYPE

STRUCT_D Type Encoding String:
*** NOT ADDRESSED BY THIS DOCUMENT SINCE IT CONTAINS
PREDEFINED (PDT) STRUCTURES ***
1. PID
2. TIMERS IN NESTED ARRAY OF STRUCT_C
3. COUNTERS IN NESTED ARRAY OF STRUCT_C

RA Technologies Copyright ©2006 Rockwell Automation

pllof 11

